From pikas to grizzly bears Wildlife population trends in Banff National Park

Jesse Whittington
Ecological Integrity Monitoring
 Parks Canada, Banff Field Unit

Our work!

- Long-term monitoring
- State of the Park \& Ecosystem Health
- Park Management Plan
- Species at Risk
- Monitoring
- MultiSpecies Action Plans
- Applied science, monitoring, \& management

- Collaboration: universities and other organizations.
- Local, Regional, \& Global trends

Robin Baron Cathy Gill
Jaime Hood Sara Jaward Petah Low Geoff Prophet Adam Zier-vogel Students
Horses

Ecological Integrity Monitoring Team

Collaborators

- Mountain Parks Resource Conservation Teams:
- Banff, Kootenay, Yoho, Jasper, Waterton, Revelstoke, \& Glacier National Parks
- Anne Forshner, Barb Johnston, Bryan Macbeth, Karsten Heuer, Seth Cherry, Saundi Norris, Tony Einfeldt, Brenda Shepherd, Helena Mahony, Jennifer Greenwood, \& Teams!
- Government of Alberta:
- John Paczkowski - Alberta Parks
- Universities \& graduate students!
- University of Montana:
- Mark Hebblewhite
- Connor Meyer, Jonathan Farr, Tara Meyer, Birch Gano.

State of the Park \& Ecosystem Health

Remote Cameras: Open Frontier

- Rapidly developing methods: detections -> abundance
- Efficient image classification:
- TimeLapse - Saul Greenberg
- MegaDetector
- Microsoft AI for Earth, Google, Wildlife Insights
- Banff contributed 7 million images
- Global Collaboration
- e.g. >13 publications with university researchers

(2) Remote Cameras: 2012-2023

Trends in occupancy

Occupancy:

- Presence-Absence
- Species range
- Index of abundance

Deer

Porcupine

Porcupine Summer (July - September)

Occupancy

Trend

Bison

Multi-Species Occupancy

Occupancy Index (+/- 1 SD): Banff
Average Change in Occupancy by Species and Season Cougar, Grizzly Bear, Lynx, Wolf, Wolverine

Wolverine: Remote Cameras

- Spring Snow Cover
- Protected Areas

Wolverine

© How many wolverine? Trends?

Mirjam Barrueto, PhD candidate, University of Calgary Anne Forshner (Parks Canada) and Teams!

Remote camera 2011-2020

2018-03-23 03:17:54 PM
$32^{\circ} \mathrm{F}(1) \quad \mathrm{M}$ 当 1

Wolverine Trends

39\% decline in 10 years
Realized abundance estimate 2020: 13 females \& 17 males within 15,000 km² United States listed as Threatened this fall

Barrueto, M., A. Forshner, J. Whittington, A. P. Clevenger, and M. Musiani. 2022. Protection status, human disturbance, snow cover and trapping drive density of a declining wolverine population in the Canadian Rocky Mountains. Scientific reports 12:17412.

Wolverine Trends

Average density 2011-2015

Density 2016-2020

Growth rate 2011-2020

0

Growth

Why decline?

- Trapping: 34 wolverine over 10 years
- Habitat loss from human activity
- Climate change
- Connectivity
- Small population effects

© How many grizzly bears? Trends?

J. Whittington, M. Hebblewhite, C. Meyer, Johnston, A. Forshner, B. Macbeth, T. Einfeldt, S. Cherry, in review

C Marked animals \rightarrow Detection \rightarrow Abundance

Remote Camera

e.g. Female 72 \& Male 122 (Boss)

Grizzly bear detections

Grizzly bear trends: by Park

© What key factors affected density?

Population of grizzly bears

Females with cubs of year

Grizzly bear trends

Within 5 km of paved roads

Population of grizzly bears

Females with cubs of year

Population of grizzly bears
Average density 2012-2016

Females with cubs of year Average density 2012-2016

Density 2017-2021

Growth rate 2012-2021

Why reduced density near roads?

- Increased mortality
- Low recruitment - Garshelis, Gibeau \& Herrero 2005
- Average age of first reproduction: 6.6 years
- Average age of first successful litter: 8.4 years
- Average cub of year survival rates 72\%
- Avoidance of human activity
- Cumulative effects

Connectivity Research

- Genetic (population) connectivity: USA to Banff
- Palm et al. 2023 - University of Montana
- GPS (movement) connectivity: USA to Banff
- Remote camera connectivity: USA to Jasper (Hebblewhite, University of Montana)

Genetic connectivity

Movement - GPS data

Effects of human activity

- Movement
- Avoid developed areas: feeding and resting.
- 86% reduction in connectivity
- Population

Recent Research

- Higher density in parks!
- 39% decline in wolverine density
- Grizzly bear decline near paved roads.
- Wolves had high mortality outside of parks.

Palm et al. 2023
Barrueto et al. 2023
Tucker et al. 2023
Whittington et al. 2022

- Genetic (population level) connectivity
- Female wolverine connectivity fragmented by highways
- Grizzly bear connectivity reduced by development
- DNA study from > 1000 grizzly bears)

Multi-species action plan

- Barb Johnston, Anne Forshner \& interdisciplinary teams
- Amending 2017 plan
- Developing recommendations to address key threats to Endangered, Threatened, Species of Concern

Banff National Park: multi-species action plan

Implementation Report: Multi-species Action Plan for Banff National Park of Canada (2017 to 2022)

Pika trends

Pika threats

- Climate change
- Hotter, drier summers
- Low annual precipitation
- Warming temperatures
- Loss of vegetation

Hay pile activity: 2011-2023

- Leads: Jaime Hood \& Jocelyn Hirose
- Metric: proportion of sites with active hay piles

Pika trends - active hay piles

Consolation Lake

Pika trends - active hay piles

- Power to detect trends?
- Overlapping home ranges
- Shifting talus \& hay pile sites
- Can we count pikas?

Pika abundance: pilot study

Repeat visual surveys Abundance $=\frac{\text { Number Observed }}{\text { Detection Probability }}$ Increased statistical power to detect trends in abundance?

Pika abundance: pilot study

Pika summary

- Visual surveys are promising
- Pikas: Doing well in most of their range
- At risk along edge of their range: low elevations \& hot dry climates

Amphibian Trends

- Leads: Cathy Gill \& Geoff Prophet
- Repeat visual surveys
- Western toad: special concern
- Indicators of water quality

Amphibian Detections

Raw probability of detection

Amphibian Trends

© Amphibian: Acoustic monitoring

- Leads: Robin Baron \& Cathy Gill
- Acoustic recording devices (ARU's)
- Increase number of sites and samples per site

Songbird Trends: 2007-2023

- Leads: Adam Zier-vogel, Sara Jaward, Robin Baron
- Long-term trends: Forests \& Alpine
- Bison reintroduction
- 10 point counts per transect
- Sample 300 points in BNP

Songbirds Trends

Forests

-	Increasing:	47%
-	Stable:	44%
-	Decreasing:	9%

Alpine

- Increasing: 19%
- Stable: 68\%
- Decreasing: 13%

Songbirds \& Climate Change

Climate change

- Population increased during warmer \& drier years.
- Most other studies find population declines.

Landbird trends in protected areas using time-to-event occupancy
 2019
 models
 Jesse Whittington, ${ }^{1,} \dagger$ Brenda Shepherd, ${ }^{2}$ Anne Forshner, ${ }^{3}$ Julien St-Amand, ${ }^{2}$ Jennifer L. Greenwood, ${ }^{3}$
 Cameron S. Gillies, ${ }^{4}$ Barb Johnston, ${ }^{5}$ Rhonda Owchar, ${ }^{3}$ Derek Petersen, ${ }^{3}$ and James Kimo Rogala ${ }^{1}$

Jonathan Farr, University of Montana
 Divide Basin

Hermosilla et al. 2022. Land cover classification in an era of big and open data: Optimizing localized implementation and training data selection to improve mapping outcomes. Remote Sensing of Environment.

© Landcover change: 1985 to 2019 Banff National Park

Percent of Landscape

© Landcover change: 1985 to 2019 Banff National Park

Percent of Landscape

Change in percent

Change 1985 to 2019: Pipestone \& Clearwater Pass Alpine meadows

Shrubs

Change 1985 to 2019: Bow Valley

Shrubs

Conifers

Conifer recruitment in grouseberry habitat: Hamer \& Pengelly 1978 to 2022 - Upper Cascade

Hamer, D., and I. Pengelly. 2023. Conifer recruitment in upper-subalpine Grouseberry (Vaccinium scoparium Leiberg ex Coville) habitat in Banff National Park, Alberta.

Landcover change

- High elevation (Climate change): meadows \rightarrow shrubs \rightarrow conifers
- Depends on soil, slope, moisture, and aspect
- Low elevation (Fire):
meadows $\leftrightarrow \rightarrow$ shrubs $\leftrightarrow \rightarrow$ conifers
- High elevation localized species (HELS): Bow Valley Naturalists

Summary

Importance of protected areas!

- Wildlife population trends
- Why? Mechanisms?

- Climate change?
- Importance of long-term monitoring \& collaboration
- Our activities affect wildlife movement, connectivity, and abundance

