

From pikas to grizzly bears Wildlife population trends in Banff National Park

Jesse Whittington Ecological Integrity Monitoring Parks Canada, Banff Field Unit

Our work!

- Long-term monitoring
 - State of the Park & Ecosystem Health
- Park Management Plan
- Species at Risk
 - Monitoring
 - MultiSpecies Action Plans
- Applied science, monitoring, & management
 - Collaboration: universities and other organizations.
 - Local, Regional, & Global trends

Robin Baron Cathy Gill Jaime Hood Sara Jaward Petah Low Geoff Prophet Adam Zier-vogel Students Horses

Collaborators

- Mountain Parks Resource Conservation Teams:
 - Banff, Kootenay, Yoho, Jasper, Waterton, Revelstoke, & Glacier National Parks
 - Anne Forshner, Barb Johnston, Bryan Macbeth, Karsten Heuer, Seth Cherry, Saundi Norris, Tony Einfeldt, Brenda Shepherd, Helena Mahony, Jennifer Greenwood, & Teams!
- Government of Alberta:
 - John Paczkowski Alberta Parks
- Universities & graduate students!
- University of Montana:
 - Mark Hebblewhite
 - Connor Meyer, Jonathan Farr, Tara Meyer, Birch Gano.

State of the Park & Ecosystem Health

- Rapidly developing methods: detections -> abundance
- Efficient image classification:
 - TimeLapse Saul Greenberg
 - MegaDetector
 - Microsoft AI for Earth, Google, Wildlife Insights
 - Banff contributed 7 million images
- Global Collaboration
 - e.g. >13 publications with university researchers

Remote Cameras: 2012 - 2023

Trends in occupancy

Occupancy:

- Presence-Absence
- Species range
- Index of abundance

Deer

White-Tailed Deer Summer (July - September)

Chronic wasting disease?

Porcupine

Multi-Species Occupancy

2021-06-15 11:46:59 AM M 1/5

8°C

0

Wolverine: Remote Cameras

Wolverine

- Spring Snow Cover
- Protected Areas

Detections per Month

How many wolverine? Trends?

Mirjam Barrueto, PhD candidate, University of Calgary Anne Forshner (Parks Canada) and Teams!

DNA & camera ID 2011 – 2013 2018 - 2020

Wolverine Trends

39% decline in 10 years

Realized abundance estimate 2020: 13 females & 17 males within 15,000 km² United States listed as *Threatened* this fall

Barrueto, M., A. Forshner, J. Whittington, A. P. Clevenger, and M. Musiani. 2022. *Protection status, human disturbance, snow cover and trapping drive density of a declining wolverine population in the Canadian Rocky Mountains*. Scientific reports **12:17412.**

Wolverine Trends

Why decline?

- Trapping: 34 wolverine over 10 years
- Habitat loss from human activity
- Climate change
- Connectivity
- Small population effects

J. Whittington, M. Hebblewhite, C. Meyer, Johnston, A. Forshner, B. Macbeth, T. Einfeldt, S. Cherry, *in review*

Marked animals \rightarrow Detection \rightarrow Abundance

Remote Camera

RSF + GPS Nordegg Saskatchewan Crossing RSF Summer Invermere 50 km

e.g. Female 72 & Male 122 (Boss)

Grizzly bear detections

Grizzly bear trends: by Park

What key factors affected density?

Females with cubs of year

Grizzly bear trends Within 5 km of paved roads

Females with cubs of year

Population of grizzly bears Average density 2012 - 2016

10

5

0

Females with cubs of year Average density 2012 - 2016

Density 2017 - 2021

Growth rate 2012 - 2021

Density >15

10

5

0

1

1.4

1.2 1.0

0.8

Growth rate 2012 - 2021

Why reduced density near roads?

• Increased mortality

• Low recruitment – Garshelis, Gibeau & Herrero 2005

- Average age of first reproduction: 6.6 years
- Average age of first successful litter: 8.4 years
- Average cub of year survival rates 72%
- Avoidance of human activity
- Cumulative effects

Connectivity Research

- Genetic (population) connectivity: USA to Banff
 - Palm et al. 2023 University of Montana
- GPS (movement) connectivity: USA to Banff
- Remote camera connectivity: USA to Jasper (Hebblewhite, University of Montana)

Genetic connectivity

Movement - GPS data

Effects of human activity

• Movement

- Avoid developed areas: feeding and resting.
- 86% reduction in connectivity

Population

- Higher density in parks!
- 39% decline in wolverine density
- Grizzly bear decline near paved roads.
- Wolves had high mortality outside of parks.
- Genetic (population level) connectivity
 - Female wolverine connectivity fragmented by highways
 - Grizzly bear connectivity reduced by development
 - DNA study from > 1000 grizzly bears)

Recent Research Palm et al. 2023 Barrueto et al. 2023 Tucker et al. 2023 Whittington et al. 2022 Hebblewhite & Whittington 2020 Sawaya et al. 2019 Whittington et al. in review

Multi-species action plan

- Barb Johnston, Anne Forshner & interdisciplinary teams
- Amending 2017 plan
- Developing recommendations to address key threats to Endangered, Threatened, Species of Concern

Banff National Park: multi-species action plan

Recommended citation:

Parks Canada Agency. 2017. Multi-species Action Plan for Banff National Park of Canada [Proposed]. Species at Risk Act Action Plan Series. Parks Canada Agency, Ottawa. iv + 30 pp.

Implementation Report: Multi-species Action Plan for Banff National Park of Canada (2017 to 2022)

Pika trends

Pika threats

• Climate change

- Hotter, drier summers
- Low annual precipitation
- Warming temperatures
- Loss of vegetation

Hay pile activity: 2011 - 2023

- Leads: Jaime Hood & Jocelyn Hirose
- Metric: proportion of sites with active hay piles

Pika trends – active hay piles

Pika trends – active hay piles

Pika abundance: pilot study

Number Observed

Repeat visual surveys $Abundance = \frac{Namber Observed}{Detection Probability}$ Increased statistical power to detect trends in abundance?

Pika abundance: pilot study

Pika summary

- Visual surveys are promising
- Pikas: Doing well in most of their range
- At risk along edge of their range: low elevations & hot dry climates

Smith, A. T. 2020. Conservation status of American pikas (Ochotona princeps). Journal of Mammalogy.

Amphibian Trends

- Leads: Cathy Gill & Geoff Prophet
- Repeat visual surveys
- Western toad: special concern
- Indicators of water quality

Amphibian Detections

Amphibian Trends

Amphibian: Acoustic monitoring

- Leads: Robin Baron & Cathy Gill
- Acoustic recording devices (ARU's)
- Increase number of sites and samples per site

Songbird Trends: 2007 - 2023

- Leads: Adam Zier-vogel, Sara Jaward, Robin Baron
- Long-term trends: Forests & Alpine
- Bison reintroduction
- 10 point counts per transect
- Sample 300 points in BNP

Divide pass songbird monitoring for bison project

Songbirds Trends

Forests

- Increasing: 47%
- Stable: 44%
- Decreasing: 9%

Alpine

- Increasing:
- Stable: 68%
- Decreasing:

19%

13%

Songbirds & Climate Change

Climate change

- Population increased during warmer & drier years.
- Most other studies find population declines.

Landbird trends in protected areas using time-to-event occupancy models JESSE WHITTINGTON,^{1,†} BRENDA SHEPHERD,² ANNE FORSHNER,³ JULIEN ST-AMAND,² JENNIFER L. GREENWOOD,³ CAMERON S. GILLIES,⁴ BARB JOHNSTON,⁵ RHONDA OWCHAR,³ DEREK PETERSEN,³ AND JAMES KIMO ROGALA¹

Landcover change

Jonathan Farr, University of Montana

Divide Basin

Hermosilla et al. 2022. Land cover classification in an era of big and open data: Optimizing localized implementation and training data selection to improve mapping outcomes. Remote Sensing of Environment.

Landcover change: 1985 to 2019 Banff National Park

Percent of Landscape

Landcover change: 1985 to 2019 Banff National Park

Percent of Landscape

Change in percent

Change 1985 to 2019: Pipestone & Clearwater Pass Alpine meadows ------ Shrubs

Change 1985 to 2019: Bow Valley Shrubs

Conifer recruitment in grouseberry habitat: Hamer & Pengelly 1978 to 2022 – Upper Cascade

1978

Hamer, D., and I. Pengelly. 2023. Conifer recruitment in upper-subalpine Grouseberry (Vaccinium scoparium Leiberg ex Coville) habitat 54 in Banff National Park, Alberta.

Landcover change

• High elevation (Climate change):

meadows \rightarrow shrubs \rightarrow conifers

- Depends on soil, slope, moisture, and aspect
- Low elevation (Fire):

meadows $\leftarrow \rightarrow$ shrubs $\leftarrow \rightarrow$ conifers

• High elevation localized species (HELS): Bow Valley Naturalists

Trant, A., E. Higgs, and B. M. Starzomski. 2020. A century of high elevation ecosystem change in the Canadian Rocky Mountains. Scientific ₅₅ reports 10:9698.

Summary

- Importance of protected areas!
- Wildlife population trends
 - Why? Mechanisms?
 - Climate change?
 - Importance of long-term monitoring & collaboration
- Our activities affect wildlife movement, connectivity, and abundance

